67 research outputs found

    Soil developments in polar deserts: Implications for exobiology and future Mars missions

    Get PDF
    Chemical alterations, weathering, and diagenesis of soil profiles from the dry valleys of Antarctica were studied as analogs of regolith development for the Martian regolith. Chemical weathering processes play an important part in soil development within the dry valleys of Antarctica. A suite of core samples were studied which were taken within the valley floors in addition to samples taken in the vicinity of evaporite and brine ponds. Analysis of water soluable cations and anions from core samples were performed along with petrographic analysis of selected samples. It was shown that ionic transport processes operate primarily above the permafrost zone. Abundances of the water soluable ions reflect the nature of secondary minerals produced by evaporation and weathering. Chloride, calcium, and sodium abundances for soils from the cores within the North and South Forks of Wright Valley, reflect the secondary mineralogy of the soil columns. Calculations for Na, Ca, and Cl abundances reflect the appearance of halite and antarcticite. In areas where excess Ca is present, X-ray diffraction studies show the presence of gypsum. It is well known that the Martian surface conditions may be favorable for chemical weathering. Primary silicates would be expected to be reactive with any ground water. It seems likely that Martian subsurface water is available to assist in the weathering of the primary minerals. Such weathering could result in the formation of clays, sulfates, carbonates, hydrates, halides, and zeolites. The dry valley cores have shown that they maybe excellent analogs to weathering processes on the near-surface of Mars. Since movement of water within the near-surface region clearly results in chemical weathering, leaching, and salt formation in the dry valleys, similar processes are probably operating within the Martian regolith

    Availability of hydrogen for lunar base activities

    Get PDF
    Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as a reducing agent in the extraction of oxygen from lunar minerals. This study was undertaken in order to learn more about the abundance and distribution of solar-wind-implanted hydrogen. Hydrogen was found in all samples studied, with concentrations, varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the Moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil

    The Moon: Biogenic elements

    Get PDF
    The specific objectives of the organic chemical exploration of the Moon involve the search for molecules of possible biological or prebiological origin. Detailed knowledge of the amount, distribution, and exact structure of organic compounds present on the Moon is extremely important to our understanding of the origin and history of the Moon and to its relationship to the history of the Earth and solar system. Specifically, such knowledge is essential for determining whether life on the Moon exists, ever did exist, or could develop. In the absence of life or organic matter, it is still essential to determine the abundance, distribution, and origin of the biogenic elements (e.g., H, C, O, N, S, P) in order to understand how the planetary environment may have influenced the course of chemical evolution. The history and scope of this effort is presented

    Lunar hydrogen: A resource for future use at lunar bases and space activities

    Get PDF
    Hydrogen abundances were determined for grain size separates of five lunar soils and one soil breccia. The hydrogen abundance studies have provided important baseline information for engineering models undergoing study at the present time. From the studies is appears that there is sufficient hydrogen present in selected lunar materials which could be recovered to support future space activities. It is well known that hydrogen can be extracted from lunar soils by heating between 400 and 800 C. Recovery of hydrogen for regolith materials would involve heating with solar mirrors and collecting the released hydrogen. Current baseline models for the lunar base are requiring the production of 1000 metric tons of oxygen per year. From this requirement it follows that around 117 metric tons per year of hydrogen would be required for the production of water. The ability to obtain hydrogen from the lunar regolith would assist in lowering the operating costs of any lunar base

    Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    Get PDF
    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations

    Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    Get PDF
    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample

    Cryogenic Carbonate Formation on Mars: Clues from Stable Isotope Variations Seen in Experimental Studies

    Get PDF
    Discoveries of large deposits of sedimentary materials on the planet Mars by landers and orbiters have confirmed the widely held hypothesis that water has played a crucial role in the development of the martian surface. Recent studies have indicated that both water ice and liquid water may have been present and in the case of water ice perhaps is still present on or near the surface of Mars. However, there remains much controversy about the prevailing atmospheric conditions and climate of Mars during its history and whether liquid water existed on the martian surface simply during discrete geological events or whether this water was present over relatively much longer geologic time periods. The recent identification of Ca-rich carbonate by the Phoenix lander as well as its measurement of the isotopic composition of atmospheric CO2 has shown the importance of understanding the carbonates on Mars as an important sink of atmospheric carbon. This work compliments that of our past experiments where we produced cryogenic calcite in open containers, as analogs for terrestrial aufeis formation, and as a means for evaluating the fractionation of C-13 in CO2 during bicarbonate freezing [13]. Unlike our previous experiments in which carbonates were grown in ambient laboratory condition in open containers (atmospheric pressure and composition), this work attempts to quantify the amount of delta C-13 enrichment possible in both fluids and secondary carbonates formed from freezing of bicarbonate fluids under martian-like atmospheric conditions. Morphologic textures of produced carbonates in these experiments are also examined under SEM in order to identify the effect that the cryogenic freezing process has on the mineral's mineralogy. Understanding the role of kinetic isotope fractionation during formation of carbonates under martian-like conditions will aid in our ability to quantify the isotopic composition of the carbonate sink furthering our ability to model the climate history of Mars

    Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Get PDF
    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample

    Nature of Reduced Carbon in Martian Meteorites

    Get PDF
    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures on Mars associated with clay and salt minerals. The Mars Science Laboratory s investigators should be aware of reduced organic carbon components within clay-bearing phases

    Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Get PDF
    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere
    • …
    corecore